
MIGRATION BEST
PRACTICES

DRUPAL CAMP PA 2017

STEPHANIE BRIDGES

DRUPAL DEVELOPER
ACQUIA, INC.

steph.bridges@acquia.com

mailto:steph.bridges@acquia.com

WHAT IS MIGRATION?

Migration is the process of importing content from an external source.

ANALYSIS

AUTOMATED MIGRATION METHODOLOGY

• Identify sources and targets for content

• Review and document the legacy data

• Define initial business and technical rules

MAPPING

AUTOMATED MIGRATION METHODOLOGY

• Define mapping rules from legacy data to target content types

• Identify exceptions, trouble spots, and data that can’t be
automatically migrated

DEVELOPMENT

AUTOMATED MIGRATION METHODOLOGY

• Iterative process, closely coupled with content type development

• Build, import

• Identify exceptions

• Fix

• Repeat

LAUNCH

AUTOMATED MIGRATION METHODOLOGY

• Prior to launch, run full import and do QA

• Going forward, import only delta

• Set old site to ‘read only’

• QA and launch new site

IMPORTANT CONSIDERATIONS

AUTOMATED MIGRATION METHODOLOGY

• How many sites will be migrated?

• How similar are the sites?

• How much data will be migrated?

• Are there other sources of data (external integrations)?

• What are we moving the content from and what are we moving to?

• Can we get samples of the data?

• Can we get access to the data?

• How structured and consistent is the data being migrated?

• If we are migrating from HTML, how consistent is the tagging?

• What kind of data are we moving?
• content
• images/video
• html
• users
• taxonomy
• meta data (for example, OG metatags)
• redirects

• Is the site multi-lingual?

MIGRATE IN
DRUPAL 8

MIGRATION COMPONENTS IN DRUPAL 8

• Drupal 8 migration API provides services for migrating data from
one place to another (generally, importing into Drupal entities)

• The core migrate module provides a general purpose framework
which can be used to build migrations

• The core Migrate Drupal module provides an upgrade path from
Drupal 6 or 7 to Drupal 8

• Migration components are implemented as plugins

• Contrib modules provide additional functionality, including
command line tools, additional source/process/destination
plugins, plugin types, and API extensions

OVERVIEW

ANATOMY OF A MIGRATION

• Migrations are defined as configuration entities

• There are three parts to a migration configuration

• Individual components are plugins

• The source plugin provides the data as rows

• Each row is handed to a set of process plugins which transform
and map the data to destination properties

• The destination plugin saves the data to the entity

CONFIGURATION ENTITY

ANATOMY OF A MIGRATION

• The configuration is defined using YAML

• A configuration entity must contain four keys

• id - string which identifies the migration

• source - associative array which contains the plugin name and
any configuration details

• process - defines how the source data properties are to be
mapped to the destination

• destination - defines the destination entity

SOURCE PLUGIN

ANATOMY OF A MIGRATION

• plugin is the only required
key

• track_changes can be used
to allow importing changed
rows in addition to new
ones

• other keys will define
settings such as filename,
database credentials, etc

source:
 plugin: plugin_name
 track_changes: TRUE

Basic Example

CSV Source
source:
 plugin: csv
 header_row_count: 1
 path: path/to/data.csv
 keys:
 - id
 column_names:
 -
 id: ID
 -
 parent_id: ParentId
 -
 name: Name
 -
 description: Description

PROCESS PLUGINS

ANATOMY OF A MIGRATION

• Process plugins are used to
map each field in the source to
its corresponding destination
entity property

• Plugins can also transform the
data in addition to mapping

• Process plugins can be
chained, with the data
returned by a plugin passed to
the next in the chain

process:
 type:
 plugin: default_value
 default_value: article
 uid:
 plugin: default_value
 default_value: 1
 title: title
 ‘body/value’: body
 ‘body/summary’: teaser
 ‘body/format’: rich_html
 field_tags:
 -
 plugin: skip_on_empty
 method: process
 source: tags
 -
 plugin: explode
 delimiter: ‘,’
 -
 plugin: migration_lookup
 migration: article_terms

PROCESS PLUGINS

ANATOMY OF A MIGRATION

• get
• default_value
• callback
• concat
• explode
• extract
• flatten
• format_date
• machine_name
• migration_lookup
• static_map

• skip_on_empty (row or process)
• skip_row_if_not_set
• iterator
• machine_name
• flatten
• entity_lookup*
• entity_generate*
• file_blob*
• merge*
• skip_on_value*

DESTINATION PLUGIN

ANATOMY OF A MIGRATION

• Destination has a mandatory
plugin key

• Generally the value for this is
entity:entity_type

• Additional keys can be used
to specify the default bundle
or whether this is a
translation

destination:
plugin: entity:node

MIGRATE API EVENTS
• Migrate implements events using an event subscriber
• You create a service which responds to the event(s)

• MigrateEvents::PRE_IMPORT
• MigrateEvents::POST_IMPORT
• MigrateEvents::PRE_ROLLBACK
• MigrateEvents::POST_ROLLBACK
• MigrateEvents::MAP_SAVE
• MigrateEvents::MAP_DELETE
• MigrateEvents::PRE_ROW_SAVE
• MigrateEvents::POST_ROW_SAVE
• MigrateEvents::PRE_ROW_DELETE
• MigrateEvents::POST_ROW_DELETE
• MigrateEvents::PREPARE_ROW*

MIGRATE
EXAMPLE

id: beer
label: Beer Imports
description: A few simple beer-related imports, to demonstrate how to implement migrations.
source_type: Custom tables
shared_configuration:
 source:
 key: default

dependencies:
 enforced:
 module:
 - migrate_example

Migration Group

migrate_plus.migration_group.beer.yml

id: beer_term
label: Migrate style categories from the source database to taxonomy terms
migration_group: beer
source:
 plugin: beer_term

destination:
 plugin: entity:taxonomy_term

process:
 name: style
 description: details
 vid:
 plugin: default_value
 default_value: migrate_example_beer_styles
 tid:
 plugin: migration_lookup
 migration: beer_term
 source: style_parent

migration_dependencies: {}
dependencies:
 enforced:
 module:
 - migrate_example

migrate_plus.migration.beer_term.yml

id: beer_user
label: Beer Drinkers of the world
migration_group: beer
source:
 plugin: beer_user
destination:
 plugin: entity:user
process:
 pass: password
 mail: email
 init: email
 status: status
 roles:
 plugin: default_value
 default_value: 2
 name:
 plugin: dedupe_entity
 source: username
 entity_type: user
 field: name
 postfix: _
 created:
 plugin: callback
 source: registered
 callable: strtotime
 changed: '@created'
 access: '@created'
 login: '@created'
 field_migrate_example_gender:
 plugin: static_map
 source: sex
 map:
 0: Male
 1: Female
 bypass: true
 field_migrate_example_favbeers:
 plugin: migration_lookup
 source: beers
 migration: beer_node

migration_dependencies: {}
dependencies:

migrate_plus.migration.beer_user.yml

id: beer_node
label: Beers of the world
migration_group: beer
source:
 plugin: beer_node
destination:
 plugin: entity:node
process:
 type:
 plugin: default_value
 default_value: migrate_example_beer
 title: name
 nid: bid
 uid:
 plugin: migration_lookup
 migration: beer_user
 source: aid
 sticky:
 plugin: default_value
 default_value: 0
 field_migrate_example_country: countries
 field_migrate_example_beer_style:
 plugin: migration_lookup
 migration: beer_term
 source: terms
 'body/value': body
 'body/summary': excerpt
migration_dependencies:
 required:
 - beer_term
 - beer_user
dependencies:
 enforced:
 module:
 - migrate_example

migrate_plus.migration.beer_node.yml

CREATING MIGRATIONS
IN DRUPAL 8

BEFORE YOU WRITE ANY CODE

CREATING A MIGRATION

• Make sure you have completed the analysis of the source content
and you understand how to retrieve the data you will need

• Decide how you are going to access the source content — e.g.
directly via SQL, exported CSV files, XML/JSON data, either via
static files or an HTTP endpoint on the legacy site

• Have defined your content model for your new Drupal site and
have set up your content entities (nodes, taxonomy, paragraph
items, media bundles, etc.)

THINGS TO CONSIDER

CREATING YOUR FIRST MIGRATION

• What is the configuration management strategy for your site?
• How will you update configuration when you make changes or

add new YAML files?
• What is your data source?

• Can you use an existing source plugin, or will you need to write
your own (any SQL source will require a custom source plugin)

• Will you need to do any processing of your source data during
mapping that cannot be accomplished using existing process
plugins?
• Recommend using process plugins when you need to transform

data during mapping

MIGRATING INTO PARAGRAPHS

MIGRATION CONSIDERATIONS

• Create a migration configuration for your paragraphs items
• Destination plugin is ‘entity_reference_revisions:paragraph’
• The parent node migration must have the paragraph migration as

a migration dependency
• Paragraphs items are referenced by their entity_id and revision_id
• Process plugin in node migration will need to provide both values

 field_paragraphs:
 -
 plugin: explode
 delimiter: ','
 source: paragraph_items
 -
 plugin: migration_lookup
 migration: paragraph_migration
 -
 plugin: skip_on_empty
 method: process
 -
 plugin: iterator
 process:
 target_id: '0'
 target_revision_id: '1'

Referencing a paragraph item in a node:
Assuming a node field named “field_paragraphs” and a source row property named
paragraph_items which contains the source ID(s) from the “paragraph_migration”
migration.

MIGRATING MULTI-LINGUAL CONTENT

MIGRATION CONSIDERATIONS

• Migrate source data for non-default language must contain
reference to associated default language content

• Create migrations which migrate all content in the site’s default
language

• Create separate migrations which migrate all other languages
• Each translation migration must depend on the associated

default language migration
• Migration must map the entity id of the migrated entity to the

id of the default language entity
• The destination plugin must include the “translations” property

process:
 parent:
 plugin: migration_lookup
 migration: paragraph_migration
 source: master_id
 id: '@parent/0'
 revision_id: '@parent/1'

destination:
 plugin: ‘entity:node'
 translations: true

process:
 nid:
 plugin: migration_lookup
 migration: article
 source: parent_id

NODE TRANSLATIONS

destination:
 plugin: 'entity_reference_revisions:paragraph'
 translations: true

PARAGRAPH ITEMS TRANSLATIONS

CUSTOM PROCESS PLUGIN
• Creating a custom process plugin is a straightforward process

• Create your plugin class in a custom module in  
module_name/src/Plugin/migrate/process

• Class should extend ProcessPluginBase

• Class must implement the transform method

• Annotate your plugin in the class DocBlock

/**
 * Creates a custom ECK component.
 *
 * @MigrateProcessPlugin(
 * id = "eck_component"
 *)
 */

<?php

namespace Drupal\migrate_demo_content\Plugin\migrate\process;

use Drupal\migrate\MigrateExecutableInterface;
use Drupal\migrate\ProcessPluginBase;
use Drupal\migrate\Row;

/**
 * Decode HTML entities for use in unformatted text fields.
 *
 * @MigrateProcessPlugin(
 * id = "html_entity_decode"
 *)
 */
class HtmlEntityDecode extends ProcessPluginBase {

 /**
 * {@inheritdoc}
 */
 public function transform($value, MigrateExecutableInterface $migrate_executable, Row
$row, $destination_property) {
 return html_entity_decode($value, ENT_QUOTES);
 }

}

PROCESS PLUGIN EXAMPLE

LINKS

Migate API:
https://www.drupal.org/docs/8/api/migrate-api

Migrating from CSV sources:
https://www.drupal.org/docs/8/modules/migrate-source-csv/using-
the-migrate-source-csv-plugin
https://www.mtech-llc.com/blog/ada-hernandez/how-migrate-
images-drupal-8-using-csv-source
https://evolvingweb.ca/blog/drupal-8-migration-migrating-basic-
data-part-1

Migrating multi-lingual:
https://evolvingweb.ca/blog/migrate-translations-csv-json-or-xml-
drupal-8

https://www.drupal.org/docs/8/api/migrate-api
https://www.drupal.org/docs/8/modules/migrate-source-csv/using-the-migrate-source-csv-plugin
https://www.drupal.org/docs/8/modules/migrate-source-csv/using-the-migrate-source-csv-plugin
https://www.drupal.org/docs/8/modules/migrate-source-csv/using-the-migrate-source-csv-plugin
https://www.drupal.org/docs/8/modules/migrate-source-csv/using-the-migrate-source-csv-plugin
https://www.mtech-llc.com/blog/ada-hernandez/how-migrate-images-drupal-8-using-csv-source
https://www.mtech-llc.com/blog/ada-hernandez/how-migrate-images-drupal-8-using-csv-source
https://www.mtech-llc.com/blog/ada-hernandez/how-migrate-images-drupal-8-using-csv-source
https://www.mtech-llc.com/blog/ada-hernandez/how-migrate-images-drupal-8-using-csv-source
https://evolvingweb.ca/blog/drupal-8-migration-migrating-basic-data-part-1
https://evolvingweb.ca/blog/drupal-8-migration-migrating-basic-data-part-1
https://evolvingweb.ca/blog/migrate-translations-csv-json-or-xml-drupal-8
https://evolvingweb.ca/blog/migrate-translations-csv-json-or-xml-drupal-8

QUESTIONS?

